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Abstract

Without an interiority or strong survival assumption, an equilibrium may not exist in the stan-
dard Arrow–Debreu model. We propose a generalized concept of competitive equilibrium, called
hierarchic equilibrium. Instead of using standard prices we use hierarchic prices. Existence will be
shown without a strong survival assumption and without a non-satiation condition on the prefer-
ences. Under standard assumptions this reduces to the Walras equilibrium. Hierarchic equilibria are
weakly Pareto optimal and any Pareto optimum can be decentralized without a border condition.
We prove the existence of a Pareto optimal hierarchic equilibrium under additional assumptions.
Later, we establish a core equivalence result. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the Arrow–Debreu model, a Walras equilibrium may not exist without a strong survival
assumption. Several authors Gay (1978), Danilov and Sotskov (1990), Marakulin (1990),
and Mertens (1996) advance generalized equilibrium concepts which exist without a strong
survival assumption. The scope of these concepts is however restricted to exchange
economies with a particular type of consumption sets. The purpose of this paper is to
propose and prove the existence of a generalized equilibrium concept for economies with
production and convex consumption sets.

The possibility of minimum-wealth situations at some prices may lead to non-existence
of a Walras equilibrium. Usually one prevents this situation from arising by an interiority

�Partially supported by Fondo Nacional de Ciencias, FONDAP-Matemáticas Aplicadas, Chile. The paper
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condition, also called strong survival or Slater assumption. Roughly, such a condition asserts
that every consumer can consume some bundle of goods within the interior of his consump-
tion set without exchanging anything (cf. Arrow and Debreu, 1954). This is satisfied, for
example, if every consumer’s initial endowment is in the interior of his consumption set and
if each firm can remain inactive. In the case where the consumption sets correspond to the
positive orthant, the strong survival assumption means that every consumer is initially en-
dowed with a strictly positive quantity of every existing commodity. Most consumers have
however a single commodity to sell their labor. So one might argue that the strong survival
assumption is almost never satisfied. Furthermore, should an agent have no share in any of
the firms, then this condition can only hold if the consumption set has a non-empty interior.
This means that every commodity — so, even every input or industrial by-product — must
be consumable.

A weak survival assumption (also called autarky assumption) asserts that every consumer
can consume some bundle of goods in his consumption set without exchanging anything. So
consumers might have a consumption set with empty interior and their initial endowment
may lie on the border of their consumption set.

A weak survival assumption is by far more acceptable than a strong one. Several authors
established sufficient existence conditions which are stronger than the weak survival
assumption, but weaker than the strong survival assumption. Considering instead of the
interiority condition, some sort of connection between the agents via their preferences and
initial endowments, Gale (1957, 1976) established the existence of a Walras equilibrium
for linear exchange economies. He assumed that every consumer has some commodity
some other consumer likes, and there are no two subgroups such that group 1 has com-
modities group 2 likes, but group 2 has no commodities group 1 likes. Furthermore, the
weak survival assumption must hold. One calls then the economy irreducible. Several au-
thors adapted this idea to more standard economies establishing weaker conditions for
the existence of a Walras equilibrium than those stated in Arrow and Debreu (1954). A
list of such contributions includes McKenzie (1959, 1961, 1981), Debreu (1962), Arrow
and Hahn (1971), Moore (1975), Bergstrom (1976), Spivak (1978), Florenzano (1981),
Geistdoerfer-Florenzano (1982), Hammond (1993), Maxfield (1997), and Florig (2001).

Despite all these efforts to find weak conditions replacing the strong survival assumption,
there are extremely simple and economically meaningful examples for the non-existence of
a Walras equilibrium (cf. Gale, 1976). The question then arises, if a competitive economy
can be in some kind of equilibrium situation, even if a Walras equilibrium does not exist. If
so, it would be interesting whether analogs of the Welfare theorems and core equivalence
still hold.

Partial answers have been given in the literature (Gay, 1978; Danilov and Sotskov, 1990;
Marakulin, 1990). We try to investigate these issues. First, we give in Section 2 a definition
of a competitive equilibrium concept we call hierarchic equilibrium. Walras and dividend
equilibria are special cases of the hierarchic equilibrium. A hierarchic equilibrium is a kind
of dividend equilibrium using hierarchic prices which generalize the notion of exchange
rates introduced by Gay (1978). At an exchange rate the set of commodities is split into
several sub-markets according to their price level. A commodity of sub-market 2 cannot
buy commodities of sub-market 1, it buys other commodities of sub-market 2 at a strictly
positive price and it buys commodities of sub-markets 2,3,. . . at price zero, so it buys infinite
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amounts of these goods. In Section 3, we first study an easy special case of hierarchic
equilibria. Then we give an interpretation of hierarchic equilibria in terms of dividend
equilibria of economies with small indivisibilities. We illustrate this with various examples.
In Section 4, we introduce further notations and a technical lemma. In Section 5, we state
the assumptions. In Section 6, we give the existence proof. In Section 7, we show that
under standard assumptions, ensuring the existence of a Walras equilibrium, the hierarchic
equilibrium reduces to a Walras equilibrium. In Section 8, we show that hierarchic equilibria
are weakly Pareto optimal, we give an analog of the second Welfare theorem without the
usual border condition and we prove the existence of a Pareto optimal hierarchic equilibrium
under additional assumptions. In Section 9, we give a core equivalence result. In Section
10, we show that one may impose a monotonicity property, implying equal treatment. In
Section 11, we discuss the different generalized equilibrium concepts and their links to the
hierarchic equilibrium.

2. Model

We denote by N , Z, R, respectively, the set of natural, integer and real numbers. Let
I = {1, . . . , I }, J = {1, . . . , J } and L = {1, . . . , L} be finite sets of consumers, firms and
commodities. Each firm j ∈ J is characterized by a production set Yj ⊂ RL. We denote
the aggregate production set by Y = ∑

j∈J Yj . Every consumer i ∈ I is characterized

by his consumption set Xi ⊂ RL, his initial endowment ωi ∈ RL and his preference
correspondence Pi :

∏
i∈IXi × ∏

j∈J Yj → 2Xi . Let ω = ∑
i∈Iωi be the total initial

endowment vector, and let X = ∑
i∈IXi . For all (i, j) ∈ I × J , θij ∈ [0, 1] represents

consumer i’s share in firm j . For every j ∈ J ,
∑

i∈I θij = 1.
An economy E is a collection:

E = ((Xi, Pi, ωi)i∈I , (Yj )j∈J , (θij)(ij)∈I×J ).

We will denote the set of feasible consumption–production plans by

F(E) =

(x, y) ∈

∏
i∈I

Xi ×
∏
j∈J

Yj

∣∣∣∣∣∣
∑
i∈I

xi =
∑
j∈J

yj + ω


 .

Let R̄ = (R∪{+∞}). For any n ∈ N , let ≥ be the lexicographic order 1 on R̄n. Extrema
will be taken with respect to the lexicographic order. We adopt the convention 0(+∞) = 0.
For x ∈ Rn, note supp x = {h ∈ {1, . . . , n}|xh �= 0} the support of x. Note e1, . . . , en the
canonic basis and B = {x ∈ Rn|‖x‖ ≤ 1} the closed unit ball in Rn.

Definition 1. A hierarchic price is a finite ordered family P = {p1, . . . , pk} of vectors
of RL.

1 For (s, t) ∈ R̄n × R̄n, s ≥ t , if sr < tr , r ∈ {1, . . . , n} implies that ∃ρ ∈ {1, . . . , r − 1} such that sρ > tρ . We
write s > t if s ≥ t , but not [t ≥ s].
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If k = 1, this reduces to the standard case. We denote byHP the set of hierarchic prices.
The number k is determined at the equilibrium. We will see that one never needs k to be
greater than L. 2

For P ∈ HP and x ∈ RL, we define the value of x to be

Px = (p1 · x, . . . , pk · x) ∈ R̄k.

The supply of firm j ∈ J at the price P is

Sj (P) = {yj ∈ Yj |∀zj ∈ Yj , Pzj ≤ Pyj }.
Alternatively, we can write Sj (P) = argmaxpk{argmaxpk−1 . . . {argmaxp1Yj } . . . }.

Given a hierarchic price, firms are thus supposed to maximize the profit lexicographically.
The profit of firm j ∈ J is

πj (P) = supyj∈YjPyj .

A hierarchic revenue is a vector w ∈ R̄k . For all i ∈ I , all P ∈ HP , all w ∈ R̄k let

ri(P, w) = min{r ∈ {1, . . . , k}|∃x ∈ Xi, (p
1 · x, . . . , pr · x) < (w1, . . . , wr)},

vi(P, w) = (w1, . . . , wri(P,w),+∞, . . . ,+∞) ∈ R̄k.

The budget set of consumer i, with respect to P ∈ HP and w ∈ R̄k will be

Bi(P, w) = {xi ∈ Xi |Pxi ≤ vi(P, w)}.

Lemma 1. If Xi is closed convex, then Bi(P, w) = {xi ∈ Xi |Pxi ≤ w}.

Proof. Note first that if Xi is closed, then {xi ∈ Xi |Pxi ≤ w} ⊂ Bi(P, w). For the con-
verse, it is sufficient to note that for every couple (a, b) ∈ {xi ∈ Xi |Pxi < w} ×Bi(P, w)
and every λ ∈]0, 1], λa + (1 − λ)b ∈ {xi ∈ Xi |Pxi < w} by the convexity. Then,
b ∈ {xi ∈ Xi |Pxi ≤ w}. �

Definition 2. A collection (x, y,P, w) ∈ F(E)×HP × (R̄k)I is a hierarchic equilibrium
of the economy E if: 3

1. for all i ∈ I , xi ∈ Bi(P, wi) and Pi(x, y) ∩ Bi(P, wi) = ∅;
2. for all i ∈ I , Pωi + ∑

j∈J θijπj (P) ≤ wi ;
3. for all j ∈ J , yj ∈ Sj (P).

2 The forthcoming definitions will depend for any r ∈ {2, . . . , k} only on the non-zero part of pr which is
orthogonal to p1, . . . , pr−1. Therefore, by an inductive argument we can always transform a hierarchic price into
an equivalent one consisting of two by two orthogonal vectors (thus of at most L).

3 If we note Li the lineality space of the positive cone generated by consumer i’s net trade set and di the
codimension of Li , then we may reduce any hierarchic price into an equivalent one with k ≤ 1 + mini∈I di .
Indeed, either 0 is an equilibrium price or we may assume the prices two by two orthogonal and all non-zero (cf.
Footnote 2). The rank of consumer i is smaller or equal to the index of the first vector which is not orthogonal to
Li . The prices of a higher index are irrelevant to him.
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Definition 3. A dividend equilibrium (resp. Walras equilibrium) is a hierarchic equilibrium
(x, y,P, w) ∈ F(E)×HP×(R̄k)I with k=1 (resp. k=1 andPωi +

∑
j∈J θijπj (P) = wi).

Let (x, y,P, w) be a hierarchic equilibrium (x, y,P, w). If for all i ∈ I ,

w1
i > inf p1 · Xi,

then (x, y, p1, w1) is a dividend equilibrium. If furthermore, all consumers satisfy some
non-satiation assumption, then (x, y, p1) is a Walras equilibrium. Note that the condition
excluding minimum-wealth situations holds under a global interiority condition together
with an irreducibility condition (cf. Section 7). In particular, it is implied by a global
non-satiation assumption together with the strong survival assumption:

0 ∈ int


Xi − ωi −

∑
j∈J

θijYj


 , for all i ∈ I.

Thus, hierarchic equilibrium and the Walras equilibrium coincide under the standard as-
sumptions for the existence of a Walras equilibrium. However, even if the set of Walras
equilibria is non-empty, there may exist hierarchic equilibrium allocations not in the set of
Walras equilibrium allocations.

Example 1. Consider an economy with two consumers and two commodities. Let X1 =
X2 = R2+, ω1 = (1, 1), ω2 = (0, 1) and u1(x) = x1, u2(x) = min{x2, 2} are the utility
functions. The unique Walras equilibrium is x1 = (1, 0), x2 = (0, 2), p = (1, 0). Other
hierarchic equilibria exist. For example, ((ξ1, ξ2), {p1, p2}, (w1, w2)) with ξi = ωi , i =
1, 2, p1 = (1, 0), p2 = (0, 1) and w1 = (1,+∞), w2 = (0, 1).

In an economy where the strong survival assumption holds, but where satiation points
of the preferences may exist, dividends may be necessary in order to lead the economy to
an equilibrium situation, called dividend equilibrium or competitive equilibrium with slack
(Drèze and Müller, 1980; Makarov, 1981; Aumann and Drèze, 1986; Mas-Colell, 1992). At a
hierarchic equilibrium some agents are restricted to operate in an affine subspace of the com-
modity space. This affine subspace is determined only at the equilibrium. Even if preferences
are not satiated on the whole consumption set, they could be satiated on the intersection be-
tween the consumption set and an affine subspace, especially if this intersection is compact.
We will see in the next section, in Example 4, that the dividend structure in the definition
of the hierarchic equilibrium is necessary for the existence when considering consumption
sets which differ from the positive orthant. We refer to Section 6 for an interpretation of the
dividend structure and to Section 10 to see that a dividend structure should be considered,
even if the existence can be shown without, as it is the case under restrictive assumptions.

3. Interpretation

Before giving an economic interpretation of the hierarchic equilibrium, we first study a
special case which might be easier to understand in a first step.
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Definition 4. An exchange rate is a hierarchic price P = {p1, . . . , pk} ⊂ RL+ such that
r �= r ′ implies supp(pr) ∩ supp(pr ′

) = ∅.

Proposition 1. Let E be an economy with J = ∅, for all i ∈ I , Xi = RL+, for all x ∈ F(E),
for all ξi, ξ̄i ∈ RL+, ξi ∈ Pi(x) implies ξi + ξ̄i ∈ Pi(x). Let (x,w,P) be a hierarchic
equilibrium of E . Then, there exists an exchange rate Q and (w′

i ) ∈ (R̄k)I such that
(x,Q, w′) is a hierarchic equilibrium.

Proof. Let r̄ + 1 be the smallest element of {1, . . . , k} such that for some h ∈ L,
(p1

h, . . . , p
r̄+1
h ) < 0. Then, for all i ∈ I , ri(P, wi) ≤ r̄ + 1. Set P̄ = {p1, . . . , pr̄}

and w̄i = (w1
i , . . . w

r̄
i ) for all i ∈ I . For all y ∈ Bi(P̄ , w̄i) there exists t > 0 such that

y + teh ∈ Bi(P̄, w̄i). If y ∈ Pi(x) then y + teh ∈ Pi(x). Hence (x, P̄ , w̄) is a hierarchic
equilibrium.

For h ∈ L, choose the smallest r ∈ {1, . . . , r̄} such that 0 < pr
h. For all ρ ∈ {r +

1, . . . , r̄} replace p
ρ
h by 0. Note the new hierarchic price by P̄h. Then, (x, P̄h, w̄) is a

hierarchic equilibrium. Indeed, suppose without loss of generality that for all i ∈ I , w̄i =
vi(P̄, w̄i). Either w̄r

i > 0, then Bi(P̄, w̄i) = Bi({p1, . . . , pr}, w̄i) or otherwise w̄r
i = 0,

thenBi(P̄, w̄i) ⊂ Rh−1 ×{0}×RL−h−1 and h cannot be consumed anyway. We may apply
this L times iteratively obtainingQ ∈ HP ∩RL+ such that 0 < qrh for some r ∈ {1, . . . , r̄}
and h ∈ L implies qρh = 0 for all ρ ∈ {r + 1, . . . , r̄} and such that (x,Q, w̄) is a hierarchic
equilibrium. So Q is an exchange rate. �

So in this simple setting one could think of a partition of the set of commodities into
different sub-markets (cf. Gay, 1978; Danilov and Sotskov, 1990). The commodities are
ordered by the level of their price. For example, second class commodities may cost infinity
compared to third class commodities, but they may be worthless compared to first class
commodities. Then, the owners of second class commodities obtain third class commodi-
ties for free, but first class commodities are inaccessible to them if they do not own some of
them. So the partition on the commodity set establishes also a partition of the consumers into
k types. Consumers of type r have strictly positive wealth in sub-market r , zero wealth in
sub-markets 1, . . . , r − 1 and infinite wealth in sub-markets r + 1, . . . , k. So commodities
of the sub-markets 1, . . . , r − 1 are inaccessible to them and commodities in sub-markets
r + 1, . . . , k are so cheap for them that the price of these is negligible in their budget
constraint.

Under conditions which ensure the existence of a Walras equilibrium all consumers
have nonminimal-wealth and they are all able to buy a strictly positive quantity of every
commodity. So in this sense they have all an income of the same order. Such a situation arises
if the initial endowments are in the interior of the consumption sets. So mathematically this
is generic provided the consumption sets have non-empty interior.

However, all consumers having access to all commodities is a rather extreme case which
is probably almost never satisfied. In most economies, agents have incomes of different
orders in the sense that some commodities have a negligible price for some consumers,
a non-negligible for others and an infinite price for still another group of consumers. An
infinite price should of course be understood in the sense that even by spending his entire
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wealth on a commodity one could not buy a unit of it. All this is of course related to the
fact that there are no perfectly divisible commodities as assumed in the standard model.
Using RL as a commodity space is of course only an approximation of the “real” discrete
commodity space. The rational is that the commodities one considers are “almost perfectly”
divisible in the sense that the indivisibilities are small and insignificant enough so that they
can be neglected. Our point here is that in the absence of the strong survival assumption
there are no insignificant indivisibilities. Clearly, at any level of indivisibility of the com-
modities one may find a price such that not all consumers have access to all commodities.
Instead of working with a discrete commodity space, working with hierarchic prices, we can
capture phenomena related to indivisibilities which may occur at any arbitrary small level
of indivisibility of the commodities. Under a strong survival assumptions these phenomena
cannot occur. Every consumer has a strictly positive quantity of everything and so every
consumer has of course access to all commodities

So one should not think of hierarchic equilibria as economic situations with several price
vectors, but one should rather see the hierarchic equilibrium as a dividend equilibrium of an
economy with small indivisibilities. Suppose it is not possible to divide commodities beyond
a certain level, say (1/n) > ε for some large integern. Think of a “true” market price as equal
to

∑k
r=1ε

r−1pr , for some ε > 0 much smaller than 1/n. In Florig (2000) it is proven that
each hierarchic equilibrium of a linear exchange economy is the limit of dividend equilibria
of the same economy where all commodities are supposed to be indivisible with a level of
indivisibility going to zero. Conversely, Florig and Rivera (2001) propose a generalization
of the Walras equilibrium existing in the case of discrete consumption sets. There standard
prices are used and considering a sequence of economies with vanishing indivisibilities the
corresponding equilibria converge to a hierarchic equilibrium.

Example 2. Let X1 = X2 = R2+, ω1 = (1, 1), ω2 = (0, 1) and the utility functions are
u1(x) = x1 and u2(x) = x1 + x2. Neither a Walras nor a dividend equilibrium exist. The
hierarchic equilibria are P = {p1, p2} with p1 = (1, 0), p2 = (0, 1), x1 = (1, t), x2 =
(0, 2 − t), w1 = (1,+∞), w2 = (0, 2 − t) with t ∈ [0, 1]. Suppose we may divide any
commodity into n ∈ N minimal units. The new consumption sets are thus Xn

1 = Xn
2 =

{x ∈ R2+|nx ∈ Z2+}. Note that Xn
i converges to R2+ as n goes to infinity. The following is

a dividend equilibrium of the corresponding discrete economy: pn = (1, (1/3n)), xn1 =
(1, tn), x2 = (0, 2 − tn), wn

1 = 1 + (1/3n),wn
2 = (1/3n)(2 − tn) with tn being a rational

in [t, t + (1 − t)/n] such that ntn ∈ Z+.

So whatever the level of indivisibility, consumer 2 cannot access the market of good 1 at
equilibrium. The hierarchic price enables us to approximate a discrete consumption space
by R2+ capturing the phenomena observed at any level of indivisibility, that is, no one has
enough of good 2 in order to use it for buying some of good 1; the price of good 2 is far
from being small for consumer 2, but it is almost zero for consumer 1. Note also that in
this example the worst individual rational feasible allocation, i.e. xi = ωi is an equilibrium
allocation.

Example 3. Consider an exchange economy with three consumers and three commodities;
for all i ∈ I , Xi = R3+, u1(x) = x1 − x2 − x3, u2(x) = x1 + 2x2 + x3, u3(x) =
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x1 +x2 + 2x3, ω1 = (1, 1, 1), ω2 = ω3 = (0, 0, 0). The hierarchic equilibrium allocations
are x1 = (1, 0, 0), xt2 = (0, 1, t), xt3 = (0, 0, 1 − t) for t ∈ [0, 1] with the hierarchic price
p1 = (1, 0, 0), p2 = (0, 2, 1) and y1 = (1, 0, 0), yt2 = (0, 1 − t, 0), yt3 = (0, t, 1) for
t ∈ [0, 1] with the hierarchic price q1 = (1, 0, 0), q2 = (0, 1, 2). It is sufficient to take
pn = p1+(1/4n)p2 and qn = q1+(1/4n)q2 in order to approach the respective hierarchic
equilibria by dividend equilibria of the economy where each unit of a commodity may be
divided into n minimal units, i.e. Xn

i = {x ∈ R3+|nx ∈ Z3+}.

The limit of both price sequences is p = (1, 0, 0). At this price one could exchange good
2 against good 3 at any exchange rate. So p is not a good approximation of the equilibrium
price of a discrete economy. We would totally neglect at which rate one may exchange good
2 against good 3 and again goods 2 and 3 are far from being cheap for consumers 2 and 3,
but they are for consumer 1.

Example 4. The following example may not be interpreted in terms of sub-markets. The
interpretation in terms of indivisibilities of the hierarchic price remains nevertheless valid.
Let X1 = X2 = {x ∈ R2+|x1 + x2 ≥ 3}, ω1 = (3, 1), ω2 = (2, 1) and u1(x) =
x1, u2(x) = x2. The set of Pareto optimal allocations and the core reduce to the sin-
gleton x1 = (4, 0), x2 = (1, 2). Nevertheless, no Walras or dividend equilibrium exists.
The only hierarchic equilibrium is x1 = (4, 0), x2 = (1, 2), p1 = (1, 1), p2 = (−1, 1)
and w1 = (4,−2), w2 = (3, 1). Indeed, we must have p1 = (1, 1) since otherwise we
would have a Walras or dividend equilibrium. Consumer 1 is not at minimum-wealth with
respect to p1. Thus, his demand is x1 = (4, 0) if he gets no extra revenue at this level. Oth-
erwise he would demand even more than 4 units of good 1 and this is not feasible. Then we
must have x2 = (1, 2) and this is only possible with p2 = (−1, 1) and w1 = (4,−2), w2
= (3, 1).

For any discretization of the consumption set (as described above), there exists a real ε > 0
such that (p1 + εp2, x1, x2) is a dividend equilibrium. Taking a sequence of discretizations
converging to the initial convex consumption set one obtains at the limit (in a certain sense)
the hierarchic equilibrium.

4. Further notations

The notations in this section are needed for most of the proofs and for Section 7. For a
set Z ⊂ RL, we denote the convex hull of Z by

coZ =
{

m∑
n=1

λnzn|zn ∈ Z, λn ≥ 0,
m∑
n=1

λn = 1,m ∈ N

}
,

the positive hull of Z by,

posZ =
{

m∑
n=1

λnzn|zn ∈ Z, λn ≥ 0, m ∈ N

}
,
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the linear span of Z by

spanZ = posZ − posZ,

the lineality of posZ by

LZ = −posZ ∩ posZ,

and the orthogonal complement of Z by

Z⊥ = {q ∈ RL|q · z = 0, ∀z ∈ Z}.
Given an economy E , we will often abuse of the notations writing posE , spanE , . . . for,

respectively, pos(X − Y − {ω}), span(X − Y − {ω}), . . .
Given an economy E and a sequence of vectors {q1, . . . , qr} ⊂ RL let for all i ∈ I ,

Xi(q
1, . . . , qr ) = {xi ∈ Xi(q

1, . . . , qr−1)|qr · xi = inf qr · Xi(q
1, . . . , qr−1)},

with Xi(∅) = Xi and for all j ∈ J , let

Yj (q
1, . . . , qr ) = {yj ∈ Yj (q

1, . . . , qr−1)|qr · yj = sup qr · Yj (q1, . . . , qr−1)},
with Yj (∅) = Yj . We have a new economy

E(q1, . . . , qr ) = ((Xi(q
1, . . . , qr ), Pi, ωi)i∈I , (Yj (q1, . . . , qr ))j∈J , (θij)(ij)∈I×J ),

which is a restriction of the original economy. Typically, {q1, . . . , qr} will be a basis of the
orthogonal complement of L(E) in RL or in spanE .

For an economy E , let

Z(E) = {σ ∈ RL|sup σ · (Y + {ω}) ≤ inf σ · X}.
Note that if σ ∈ Z(E), then F(E) = F(E(σ )). If for every ρ ∈ {1, . . . , r},

qρ ∈ Z(E(q1, . . . , qρ−1)), thenF(E) = F(E(q1, . . . , qr )).

Lemma 2. projspan(E )(Z(E)) = 0 if and only if spanE = posE .

Proof. If spanE = posE , then for all p ∈ spanE \ {0}, inf p · X < supp · (Y + {ω}).
Thus, Z(E) is orthogonal to spanE , i.e. projspanE (ZE) = 0. Suppose spanE �= posE .
Thus, L(E) ⊂ posE ⊂ spanE with strict inclusions. Let σ ∈ (posE \ {0}) ∩ (L(E))⊥.
Let z ∈ posE , z1 ∈ L(E) and z2 in (posE \ {0}) ∩ (L(E))⊥ such that z = z1 + z2. Note
that 0 ≤ σ · z2 since otherwise there exists λ ∈]0, 1[ and ζ = λσ + (1 − λ)z2 such that
σ · ζ = 0. Thus, ζ ∈ L(E)∩ (L(E))⊥ and ζ �= 0, a contradiction. Thus, 0 ≤ σ ·posE . Thus,
sup σ · (Y +{ω}) ≤ inf σ ·X, and this implies that σ ∈ Z(E). Since σ �= 0 and σ ∈ spanE ,
thus projspanE (ZE) �= 0. �

Given an economy E and a hierarchic price P , let sE (P) = min{σ ∈ {1, . . . , k}|pσ /∈
Z(E(p1, . . . , pσ−1))}. Note that if spanE = posE , and if P ⊂ spanE , then by the lemma,
sE (P) = 1, provided p1 �= 0.
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5. Assumptions

Assumption 1. For every i ∈ I , Xi is closed, convex, Pi :
∏

i∈IXi × ∏
j∈J Yj → 2Xi is

irreflexive, convex valued and has an open graph in
∏

i∈IXi × ∏
j∈J Yj × Xi .

Assumption 2. For every j ∈ J , Yj is closed and convex.

Assumption 3. The feasible set F(E) is bounded.

Assumption 4. For every i ∈ I , 0 ∈ Xi − {ωi} − ∑
j∈J θijYj .

Assumption 5. For every j ∈ J for every y, υ ∈ Yj , for every η > 0, there exists ε > 0
such that for all y′ ∈ Yj ∩ (y + εB) there exists λ ≥ 1 − η, y′ + λ(υ − y) ∈ Yj .

The only non-standard assumption is Assumption 5. At first sight, it may seem surprising
that unlike the standard case we use a slightly stronger assumption on the production sets than
on the consumption sets. Producers can be seen as agents with a “budget” set equal to their
production set for any price and with price-dependent preferences. Working with standard
prices, the supply correspondence is upper semi-continuous. The lexicographic order has of
course very bad continuity properties. For this reason the introduction of a production sector
into a model with hierarchic prices generates additional problems. Assumption 5 ensures
that the supply correspondence is upper semi-continuous with respect to a price sequence
converging to a hierarchic price. A convex set satisfies Assumption 5, for example, if it is a
polyhedron or if it is strictly convex. In R2 any convex set satisfies this condition. A closed,
convex set not satisfying this condition is:

Y = co{(1, 0, 0), (
√

1 − λ2, λ, 1)|λ ∈ [0, 1]}.
This set is the convex hull of a quarter of a disc and the point (1, 0, 0). To see that this
set does not satisfy Assumption 5, set y = (1, 0, 1), υ = (1, 0, 0) and take the sequence
(yn)n∈N = (

√
(1 − (1/n2)), 1/n, 1)n∈N . For any λ �= 0, n ∈ N , yn + λ(υ − y) /∈ Y .

6. Existence

Theorem 1. For every economy E satisfying Assumptions 1–5 there exists a hierarchic
equilibrium.

More precisely, for every (δi) ∈ RI++ there exist a hierarchic equilibrium (x, y,P, w),
rj ∈ {1, . . . , k} and qj ∈ [0,+∞] for all j ∈ J ∪ {0} such that for all j ∈ J rj ≥ 2 and
for all i ∈ I

wi = P

ωi +

∑
j∈J

θijyj


 + er0q0δi +

∑
j∈J

θijerj qj .

In the case of an exchange economy the slack in the consumers revenue can be inter-
preted as paper money (cf. Kajii, 1996), i.e. one may think of each consumer holding
initially δi units of paper money and the value of money is q0 in sub-market r0, 0 in the



M. Florig / Journal of Mathematical Economics 35 (2001) 515–546 525

better sub-markets and +∞ in the sub-markets r with r > r0. In the case of an economy
with production one could think of an additional currency per firm distributed among its
shareholders according to their share θij. It may be interesting to note that for every firm j

with a polyhedral production set we have qj = 0 (see Footnote 5 in Step 7 of the Proof).
The proof goes as follows: first, using Lemma 2, we restrict the economy to an econ-

omy satisfying some global interiority condition proceeding as in Mertens (1989); then we
compactify the economy; then we construct a sequence of perturbed equilibria adapting
Bergstrom (1976), and Gale and Mas-Colell’s (1975) approach; then we construct from
this sequence using standard prices, the hierarchic price and finally in the different claims
we check that the limit of our sequence satisfies the required conditions.

Proof. We start by replacing for every i ∈ I the preference relation Pi by

P̂i :
∏
i∈I

Xi ×
∏
j∈J

Yj → Xi,

defined by P̂i(x, y) = Pi(x, y) ∪ {λxi + (1 − λ)ξi |ξi ∈ intXi
Pi(x, y), λ ∈]0, 1[}. The

new preference relation satisfies Assumption 1 and for all (x, y) ∈ ∏
i∈IXi × ∏

j∈J Yj , if

P̂i(x, y) �= ∅ then xi ∈ P̂i(x, y) (Gale and Mas-Colell, 1979).
Note that by Assumptions 1, 2 and 4, F(E) �= ∅. �

Step 1 (Global interiority and compactification). Let {p1, . . . , ps−1} ⊂ RL be maxi-
mal family of linearly independent vectors such that for all r ∈ {1, . . . , s − 1}, pr ∈
Z(E(p1, . . . , pr−1)). This maximal family is by Lemma 2 empty if a global interiority
condition holds, i.e. if posE = RL. This gives us a new economy:

E(p1, . . . , ps−1)= ((Xi(p
1, . . . , ps−1), P̂i , ωi)i∈I , (Yj (p1, . . . , ps−1))j∈J ,

(θij)(ij)∈I×J ).

Note that this economy satisfies a global interiority condition, i.e.

LE(p1, . . . , ps−1) = posE(p1, . . . , ps−1) = spanE(p1, . . . , ps−1).

For Z ∈
{∏

i∈IXi,X1, . . . , XI ,
∏

j∈J Yj , Y1, . . . , YJ

}
, let Ẑ be the projection of F(E)

on Z. Similarly, for such a set Z(p1, . . . , ps−1) in the economy E(p1, . . . , ps−1), let
Ẑ(p1, . . . , ps−1) be the projection of F(E(p1, . . . , ps−1)) on Z(p1, . . . , ps−1). For all
Z ∈ {X1, . . . , XI , Y1, . . . , YJ }, Ẑ = Ẑ(p1, . . . , ps−1) andF(E) = F(E(p1, . . . , ps−1)).

Now we will compactify the economy E(p1, . . . , ps−1). Let C ⊂ RL be a convex
compact set such that for all Z ∈ {X1, . . . , XI , Y1, . . . , YJ }, Ẑ ⊂ intC. Such a set exists
by Assumption 3. Note Z̃ = Z(p1, . . . , ps−1) ∩ C.

Step 2 (Perturbed fixed points). For all p ∈ B, and for every j ∈ J let,

S̃j (p) = argmax{p · yj |yj ∈ Ỹj }.
ϕj (x, y, p) = {y′ ∈ Ỹj |p · y′ > p · yj }.
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Similarly, as in Bergstrom (1976) we set for all p ∈ B, and for every i ∈ I ,

Bi(p)=

xi ∈ Xi(p

1, . . . , ps−1)|p · xi ≤ p ·

ωi+

∑
j∈J

θijS̃j (p)


 + δi(1 − ‖p‖)


 .

Finally, following Gale and Mas-Colell (1975, 1979), we define the correspondence ϕi from∏
i∈I X̃i × ∏

j∈J Ỹj × B to Xi as follows

ϕi(x, y, p) =
{
Bi(p) ∩ C, if xi /∈ Bi(p),

Bi(p) ∩ C ∩ P̂i(x, y), if xi ∈ Bi(p).

We now consider a last agent which will revise prices maximizing the value of the excess
demand. We define for all ε ∈ [0, 1] the correspondence

Wε :
∏
i∈I

Xi ×
∏
j∈J

Yj × B→ B,

Wε(x, y, p) =
{
q ∈ (1 − ε)B ∩ spanE(p1, . . . , ps−1)|

(q − p) ·

∑

i∈I
xi −

∑
j∈J

yj −
∑
i∈I

ωi


 > 0


 .

For all ε ∈ [0, 1] define the correspondence Ψ ε from
∏

i∈I X̃i × ∏
j∈J Ỹj × (1 − ε)B ∩

spanE(p1, . . . , ps−1) to itself by

Ψ ε(x, y, p) =
∏
i∈I

ϕi(x, y, p) ×
∏
j∈J

ϕj (x, y, p) × Wε(x, y, p).

For all ε ∈]0, 1] Ψ ε is lower semi-continuous, convex valued and for all i ∈ I ∪ J , ϕi is
irreflexive and Wε is irreflexive. So by Florenzano (1981, pp. 89–90) (see also Florenzano
(1994)), for every ε ∈]0, 1] there exists some (xε, yε, pε), such that

xεi ∈ Bi(p
ε) ∩ C and P̂i(x

ε, yε) ∩ Bi(p
ε) ∩ C = ∅ for all i ∈ I,

yεj ∈ S̃j (p
ε) for all j ∈ J,

pε ∈ argmax


q ·


∑

i∈I
xεi −

∑
j∈J

yεj−ω


 |q ∈ (1 − ε)B ∩ spanE(p1, . . . , ps−1)


 .

We can take a sequence (ε = 1/n) with n ∈ N and denote a corresponding sequence of
perturbed equilibria by (xn, yn, pn).

Case 1. Suppose for some n ∈ N , ‖pn‖ < 1 − (1/n) then
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xn, yn,P,P


ωi +

∑
j∈J

θijy
n
j


 + esδi(1 − ‖pn‖),

with P = {p1, . . . , ps−1, pn} is a hierarchic equilibrium.

Proof. Since the price maximizes the aggregate excess demand and ‖pn‖ �= 1 − (1/n) we
have ∑

i∈I
xni =

∑
j∈J

ynj + ω.

By standard arguments:

ynj ∈ argmax{p · yj |yj ∈ Yj (p
1, . . . , ps−1)} = Sj (P), ∀j ∈ J,

xni ∈ Bi(p
n) and P̂i(x

n, yn) ∩ Bi(p
n) = ∅, ∀i ∈ I,

and to conclude note that Bi(p
n) = Bi(P,P(ωi + ∑

j∈J θy
n
j ) + esδi(1 − ‖pn‖)). �

Case 2. For all n ∈ N , ‖pn‖ = 1 − (1/n).

Let Ns−1 be an infinite subset of N such that

lim
n→+∞,n∈Ns−1

(xn, yn, pn) = (x, y, p),

and such that for every i ∈ I ,

lim
n→+∞,n∈Ns−1

Bi(p
n) = Bi,

in the sense of Painlevé–Kuratowski. The set Bi is non-empty by Assumption 4, closed and
convex by Assumption 1 (cf. Rockafellar and Wets, 1998; Proposition 4.15, Theorem 4.18).
These sets Bi will correspond to the budget sets.

Step 3. Feasibility.

Proof. Of course ‖p‖ = 1. One easily checks that

p ∈ argmax


q ·


∑

i∈I
xi −

∑
j∈J

yj − ω


 |q ∈ B ∩ spanE(p1, . . . , ps−1)


 .

For all n ∈ Ns−1,

‖pn‖
∥∥∥∥∥∥

∑

i∈I
xni −

∑
j∈J

ynj − ω




∥∥∥∥∥∥ = pn ·

∑

i∈I
xni −

∑
j∈J

ynj − ω


 ≤ I (1 − ‖pn‖).

Thus,
∑

i∈I xi = ∑
j∈J yj + ω. �
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Step 4. For all i ∈ I , xi ∈ Bi and P̂i(x, y) ∩ Bi = ∅.

Proof. By the definition of the Painlevé–Kuratowski limit, xi ∈ Bi . Suppose there exists
ξi ∈ P̂i(x, y) ∩ Bi . Thus, there exists a sequence (ξni ) such that for all n ∈ Ns−1,

pn · ξni < pn ·

ωi +

∑
j∈J

θijS̃j (p
n)


 + δi(1 − ‖pn‖).

Since P̂i has an open graph for all large n, ξni ∈ P̂i(x
n, yn). We may assume that for all n ∈

Ns−1, ξni is in the relative interior of P̂i(xn, yn)∩Xi(p
1, . . . , ps−1). For every n ∈ Ns−1,

let λn ∈]0, 1] small enough such that zni = λnξni + (1 − λ)xni ∈ intC ∩Xi(p
1, . . . , ps−1).

Thus, zni ∈ Bi(p
n) and for n ∈ Ns−1 large enough zni ∈ P̂i(x

n, yn) ∩ X̃i . This contradicts
the maximality of xni . �

Step 5 (Construction of P). Set pn
s = pn and ps = p. For r ∈ {s, . . . , L} let

Hr = {x ∈ RL|pr · x = 0}.
For r ∈ {s + 1, . . . , L}, let

pn
r = projHr−1(p

n
r−1).

If for all big enough n ∈ Nr−1 p
n
r �= 0, then let

pr = lim
n→+∞,n∈Nr

pn
r

‖pn
r ‖

,

for some infinite set Nr ⊂ Nr−1. If for some infinite set Nr ⊂ Nr−1, pn
r = 0, then

pr = · · · = pL = 0. Let k = min{r ∈ {s, . . . , L}|pr+1 = · · · = pL = 0}. So k is at most
equal to L. Note that for all r ∈ {s, . . . , k}, ‖pn

r+1‖ = ‖pn
r ‖o(‖pn

r ‖). 4

We can thus decompose the sequence pn in the following way:

pn =
k∑

r=s

(‖pn
r ‖ − ‖pn

r+1‖)pr =
k∑

r=s

εnr p
r ,

with εnr+1 = εnr o(ε
n
r ) for r ∈ {s, . . . , k − 1}, and εns converges to 1.

Step 6. For all j ∈ J , yj ∈ Sj (P).

Proof. Suppose for some j ∈ J , there exists ȳj ∈ Yj (p
1, . . . , ps−1) such thatP ȳj > Pyj .

Let tj = ȳj − yj , then for every n ∈ Nk big enough, pn · tj > 0. By Assumption 5 and the
convexity of Yj , for every 1 ≥ η > 0, there exists n̄, such that for all n ∈ Nk , n ≥ n̄, and all
λ ∈]0, η] ynj +λtj ∈ Yj (p

1, . . . , ps−1). Clearly for all largen ∈ Nk ,pn·(ynj +λtj ) > pn·ynj
and for λ ∈]0, η] small enough ynj + λtj ∈ Ỹj leading to a contradiction. �

4 Throughout the paper we denote by o : R → R a function which is continuous at 0 with o(0) = 0.
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Step 7 (Construction of the hierarchic revenue). For all r ∈ {s, . . . , k} let

qr0 = lim
n→+∞,n∈Nk+1

1 − ‖pn‖
εnr

,

and for all j ∈ J let 5

qrj = lim
n→+∞,n∈Nk+1

pn · (ynj − yj )

εnr
,

where Nk+1 is an infinite subset of Nk such that the above limits exist in R̄. For all j ∈
J ∪ {0} let rj = max{r ∈ {1, . . . , k}|∀ρ < r, q

ρ
j = 0}, set qj = q

rj
j . Note that for all

j ∈ J , rj ≥ s + 1. For all i ∈ I set

wi = P

ωi +

∑
j∈J

θijyj


 + er0q0δi +

∑
j∈J

θijerj qj ,

and let di = er0q0δi + ∑
j∈J θijerj qj .

For all i ∈ I , let ri = max{r ∈ {0, . . . , k}|argmin{p0, . . . , pr}Xi �= ∅} with p0 = 0.
Let ζi ∈ Xi such that ζi ∈ argmin{p0, . . . , pri }Xi and

pri+1 ·

ζi − ωi −

∑
j∈J

θijyj


 < 0.

Step 8. For every i ∈ I , we have Bi(P, wi) ⊂ Bi .

Proof. Let r̄i be the smallest r such that dri > 0. Let ξ ∈ {z ∈ Xi |Pz ≤ wi}. Let

;
r̄i
i =

{
d
r̄i
i , if dr̄ii is finite,

pr̄i ·
(
ξ − ωi − ∑

j∈J θijyj

)
+ 1, if dr̄ii = +∞.

Thus, there exists n1 such that for all n ∈ Nk+1, n ≥ n1,

k∑
r=s

εnr p
r ·


ξ − ωi −

∑
j∈J

θijyj


 ≤ εnr̄i ;

r̄i
i + εnr̄i o(ε

n
r̄i
).

There exists M > 0 and n2 such that for all n ∈ Nk+1, n ≥ n2,

k∑
r=s

εnr p
r ·


ζ − ωi −

∑
j∈J

θijyj


 < εnr̄i (;

r̄i
i − M).

5 Note that if Yj is a polyhedron, then one may prove by induction that for all large n and for all r ∈ {s, . . . , k},
argmaxpnYj (p

1, . . . , ps−1) ⊂ argmax
∑r

ρ=sε
n
ρp

ρYj (p
1, . . . , ps−1) ⊂ argmax{p1, . . . , pr }Yj . Thus, for all

large n, Pynj = Pyj , thus pn · (ynj − yj ) = 0.
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For all λ ∈ [0, 1[ let zλ = λξ + (1 − λ)ζ . Then for all n ∈ Nk+1, n ≥ max{n1, n2},
k∑

r=s

εnr p
r ·


zλ − ωi −

∑
j∈J

θijyj


 < εnr̄i (;

r̄i
i + λo(εnr̄i ) − (1 − λ)M).

For all λ ∈ [0, 1[, there exists nλ such that for all n ∈ Nk+1, n ≥ nλ,

εnr̄i (;
r̄i
i + λo(εnr̄i ) − (1 − λ)M) < δi(1 − ‖pn‖) +

∑
j∈J

θijp
n(ynj − yj ).

Thus, for all n ∈ Nk+1, n ≥ nλ,

k∑
r=s

εnr p
r ·


zλ − ωi −

∑
j∈J

θijyj


 ≤ δi(1 − ‖pn‖) +

∑
j∈J

θijp
n(ynj − yj ).

Thus, zλ ∈ Bi . Since Bi is closed ξ ∈ Bi , thus {z ∈ Xi |Pz ≤ wi} ⊂ Bi and again by the
closure of Bi and by Lemma 2, Bi(P, wi) = {z ∈ Xi |Pz ≤ wi} ⊂ Bi. �

Step 9. For every i ∈ I , we have Bi ⊂ Bi(P, wi).

Proof. Let z ∈ Bi . Then there exists zn ⊂ Xi(p
1, . . . , ps−1) converging to z such that for

every n ∈ Nk+1,

pn ·

zn − ωi −

∑
j∈J

θijy
n
j


 ≤ δi(1 − ‖pn‖).

For every λ ∈ [0, 1[, let zλ = λz + (1 − λ)ζ . Note that ζ may have been chosen such that
Pzλ ≤ Pzn for all n ∈ Nk+1 large enough. Thus, there exists nλ ∈ N , such that for all
n ∈ Nk+1 with n ≥ nλ,

pn ·

zλ − ωi −

∑
j∈J

θijyj


 ≤ δi(1 − ‖pn‖) +

∑
j∈J

θijp
n · (ynj − yj ).

Let r = max
{
ρ ∈ {1, . . . , k}|{p1, . . . , pρ−1}

(
zλ − ωi − ∑

j∈J θijyj

)
= 0

}
. Thus,

k∑
ρ=r

εnρ

εnr
pρ


zλ − ωi −

∑
j∈J

θijyj


 <

δi(1 − ‖pn)‖ + ∑
j∈J θijp

n · (ynj − yj )

εnr
.

Then, going to the limit one obtains

pr


zλ − ωi −

∑
j∈J

θijyj




≤ lim
n→+∞,n∈Nk+1

δi(1 − ‖pn‖) + ∑
j∈J θijp

n · (ynj − yj )

εnr
= dri .



M. Florig / Journal of Mathematical Economics 35 (2001) 515–546 531

Either pr ·
(
zλ − ωi − ∑

j∈J θijyj

)
< 0 and then zλ ∈ Bi(P, wi) or pr ·

(
zλ − ωi − ∑

j∈J
θijyj

)
> 0. In the latter case either 0 < pr

(
zλ − ωi − ∑

j∈J θijyj

)
≤ dri or for some

ρ < r , dρi > 0. Anyhow ri(P, wi) ≤ r and zλ ∈ Bi(P, wi). Since for all λ ∈ [0, 1[,
zλ ∈ Bi(P, wi), z ∈ Bi(P, wi) by the closure of Bi(P, wi). �

7. Walras equilibrium

We give now conditions ensuring that a hierarchic equilibrium is a Walras equilibrium
of some reduced economy.

Assumption 6. pos(X1 − {ω1} − ∑
j∈J θ1j Yj ) = · · · = pos(XI − {ωI } − ∑

j∈J θIjYj ).

Assumption 7. For every i ∈ I , for every (x, y) ∈ F(E), xi ∈ Pi(x, y) ∩ (L(E) + {xi}).

Assumption 6 ensures that all agents have an income of the same order. It is implied by
a strong survival assumption. Assumption 7 states that all agents are locally non-satiated in
the lineality of E , i.e. the largest subspace where a global interiority assumption holds. It is
implied by a non-satiation assumption together with a global interiority assumption. One
could weaken these conditions by imposing irreducibility (Hammond, 1993; Florig, 2000)
on the lineality of E rather than on its linear span.

Proposition 2. Suppose the economy E satisfies Assumptions 6 and 7. Then, for every
hierarchic equilibrium (x, y,P, w), the collection (x, y, psE (P)) is a Walras equilibrium
of the economy E(p1, . . . , psE (P)−1).

Proof. Note first that there exists r ≤ k such that pr /∈ Z(E(p1, . . . , pr−1)). Indeed,
note that, by Assumption 7, L(E) is of dimension at least one. If for all r ∈ {1, . . . , k},
pr ∈ Z(E(p1, . . . , pr−1)), then {p1, . . . , pk} are all orthogonal to L(E) and for all i ∈ I ,

∅ �= (L(E) + {xi}) ∩ Xi ⊂ Bi(P, wi),

contradicting the maximality of xi . Set s = sE (P) in order to simplify notations. Note that
for all i ∈ I ,

sup{p1, . . . , ps}

{ωi} +

∑
j∈J

θijYj


 > inf{p1, . . . , ps}Xi.

Indeed, this is satisfied at least for one i ∈ I and then, by Assumption 6, it is satisfied for
all i ∈ I . Then, for all i ∈ I ,

Bi({p1, . . . , ps}, {p1, . . . , ps}ωi +
∑
j∈J

θijπi(p
1, . . . , ps)) ⊂ Bi(P, wi).
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Furthermore, L(E) = L(E(p1, . . . , ps−1)). Thus, every i ∈ I is locally non-satiated in
Xi(p

1, . . . , ps−1) at (x, y). Thus, for all i ∈ I ,

{p1, . . . , ps}ωi +
∑
j∈J

θijπi(p
1, . . . , ps) ≤ {p1, . . . , ps}xi = (w1

i , . . . , w
s
i ),

and by feasibility the inequality holds as an equality.
Hence (x, y, ps) is a Walras equilibrium of E(p1, . . . , ps−1). �

As F(E) = F(E(p1, . . . , psE (P)−1)), (x, y) is Pareto optimal and in the core of E .

Corollary 1. Let E satisfy Assumptions 6 and 7 and suppose posE = spanE . Then, for any
hierarchic equilibrium (x, y,P, w), the collection (x, y, pr) is a Walras equilibrium with
r = argmin{ρ ∈ {1, . . . , k}|pρ /∈ (spanE)⊥}.

8. Welfare analysis

We will first prove weak Pareto optimality of hierarchic equilibria. Then, we will show
that every weak Pareto optimum (and hence any Pareto optimum) can be decentralized by
a hierarchic price and revenue without the standard border condition (cf. Debreu, 1959).
Similar results have been given by Marakulin (1990) for exchange economies within terms
of non-standard analysis. Later, we show that hierarchic equilibria where all agents minimize
expenditure (cf. Mas-Colell, 1992) are Pareto optimal and we prove their existence under
additional assumptions.

Definition 5.

1. A collection (x, y) ∈ F(E) is weakly Pareto optimal, if there does not exist (x′, y′) ∈
F(E) with x �= x′ and x′

i ∈ Pi(x, y) for all i ∈ I such that xi �= x′
i .

2. A collection (x, y) ∈ F(E) is Pareto optimal, if there does not exist (x′, y′) ∈ F(E)
such that for some i ∈ I , x′

i ∈ Pi(x, y) and for all i ∈ I xi /∈ Pi(x
′, y′).

Note that our definition of weak Pareto optimality differs from the usual one according to
which an allocation is weakly Pareto optimal, if no allocation preferred by every consumer
exist. This definition would have the defect, that if one consumer is indifferent between
any allocation, i.e. he is not interested in anything, then any feasible allocation is weakly
Pareto optimal. The definition of Pareto optimality is a straightforward generalization to
the case of intransitive and incomplete preferences. It differs however from the definitions
of Pareto optimality usually encountered in the literature on such preferences. These are
in fact refinements of weak Pareto optimality which do not reduce to the standard defini-
tion of Pareto optimality when preferences are assumed to be complete and transitive (see
Florenzano (1981) for a survey).

Proposition 3. Every hierarchic equilibrium (x, y,P, w) is weakly Pareto optimal.
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Proof. Suppose (x, y) is not weakly Pareto optimal. Then, there exists (x′, y′) ∈ F(E)
with x′ �= x and x′

i ∈ Pi(x, y) for all i ∈ I such that xi �= x′
i . Therefore, for all i ∈ I , such

that xi �= x′
i , Px

′
i > Pxi and thus

P
∑
i∈I

x′
i > P

∑
i∈I

xi = P

∑
j∈J

yj + ω


 ≥ P


∑
j∈J

y′
j + ω


 .

Therefore, (x′, y′) is not feasible. �
Under a global interiority and local non-satiation condition there are no Pareto dominating

allocations where the richest consumers (i.e. those with non minimum-wealth with respect
to p1) are better off. However, Pareto dominating allocations may exist where consumers
with minimum-wealth with respect to p1 receive strictly preferred allocations.

Example 5. In the standard framework the second welfare theorem requires a border con-
dition which does not hold in this example. Let X1 = X2 = R2+, u1(x) = x1

√
x1, u2(x) =√

(x1)+ x2, the total endowment is (1, 1) and x1 = (1, 0), x2 = (0, 1). Clearly, (x1, x2) is
a Pareto optimum and all standard conditions are satisfied apart the fact that the allocation
is not interior. It cannot be decentralized by a standard price. Indeed, both components of a
decentralizing price would need to be strictly positive, but then consumer 2 would prefer to
sell some of good 2 in order to buy some of good 1. The hierarchic priceP = {(1, 0), (0, 1)}
decentralizes the Pareto optimum.

Proposition 4. Suppose for all i ∈ I , Xi is convex, Pi is irreflexive, convex valued and
it has open values in Xi . For all j ∈ J , Yj is convex. Let (x, y) ∈ F(E) be (weakly)
Pareto optimal, then there exists P, (ω′

i ), (θ
′
ij) with

∑
i∈Iω′

i = ω, such that the collection(
x, y,P,

(
Pω′

i + ∑
j∈J θ ′

ijπj (P)
)
i∈I

)
is a hierarchic equilibrium of the economy E ′ =

((Xi, Pi, ω
′
i ), (Yj ), (θ

′
ij)).

Proof. Choose some i′ ∈ I , then for i ∈ I \ {i′} set ω′
i = xi and for all j ∈ J , θij = 0. Set

ωi′ = ω − ∑
i∈I\{i′}xi and for all j ∈ J , θi′j = 1. For a sequence of vectors q1, . . . , qL

and for r ∈ {1, . . . , L}, let

I r−1 = I (q1, . . . , qr−1) = {i ∈ I |Pi(x, y) ∩ Xi(q
1, . . . , qr−1) �= ∅},

G(q1, . . . , qr−1)=
∑

i∈I r−1

Pi(x, y) ∩ Xi(q
1, . . . , qr−1)

+
∑

i /∈I r−1

xi −
∑
j∈J

Yj (q
1, . . . , qr−1) − ω.

Note that G(q1, . . . , qr−1) is convex. Let r ∈ {1, . . . , L}, then if I (p1, . . . , pr−1) = ∅
set P = {p1, . . . , pr−1} if r ≥ 2 and P = 0 otherwise. If I (p1, . . . , pr−1) �= ∅, then
0 is not in the relative interior of G(p1, . . . , pr−1). We can therefore choose some vector
pr �= 0 in the vector subspace spanned by G(p1, . . . , pr−1) which is orthogonal to the
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vector subspace spanned by {p1, . . . , pr−1}− such that 0 ≤ inf pr · G(p1, . . . , pr−1).
Now for every j ∈ J , {p1, . . . , pr}yj = πj (p

1, . . . , pr) and for i ∈ I ,

{p1, . . . , pr}xi > inf{p1, . . . , pr}Xi ⇒ i /∈ I (p1, . . . , pr).

For some k ≤ L, the process stops, I (P) = ∅ and for all i ∈ I ,

Pi(x, y) ∩ Bi


P,Pω′

i +
∑
j∈J

θ ′
ijπj (P)


 = ∅.

�
We will now turn to the existence of Pareto optimal hierarchic equilibria. For this we

define the notion of expenditure minimization (cf. Mas-Colell, 1992) for our set-up.

Definition 6. Consumer i ∈ I minimizes expenditure at (x, y,P) ∈ ∏
i∈IXi ×

∏
j∈J Yj ×

HP if for all (x′, y′) ∈ ∏
i∈IXi × ∏

j∈J Yj , xi /∈ Pi(x
′, y′) implies Px′

i ≥ Pxi .

Proposition 5. Every hierarchic equilibrium (x, y,P, w) satisfying expenditure minimiza-
tion for all i ∈ I is Pareto optimal.

Proof. Let (x′, y′) ∈ ∏
i∈IXi × ∏

j∈J Yj Pareto dominating (x, y). So, for all i ∈ I ,
by expenditure minimization, Px′

i ≥ Pxi and for at least one i ∈ I , Px′
i > wi ≥ Pxi .

Hence,P
∑

i∈I x′
i > P

∑
i∈I xi = P

(∑
j∈J yj + ω

)
≥ P

(∑
j∈J y′

j + ω
)

. Thus, (x′, y′) /∈
F(E). �

We show under additional assumptions the existence of a hierarchic equilibrium with
expenditure minimization for all i ∈ I . For all i ∈ I , let Ki = projXi

{
(x, y) ∈ ∏

i∈IXi

×∏
j∈J Yj |Pi(x, y) = ∅

}
be the projection of the satiation points on Xi .

Assumption 8. For all i ∈ I ,

1. Ki is convex and closed,
2. If Pi(x, y) = ∅, then for all (x′, y′) ∈ ∏

i∈IXi × ∏
j∈J Yj such that Pi(x′, y′) �= ∅, we

have xi ∈ Pi(x
′, y′).

Assumption 9. For all i ∈ I and all (x, y), (x′, y′) ∈ ∏
i∈IXi × ∏

j∈J Yj such that

Pi(x
′, y′) �= ∅, if xi /∈ Pi(x

′, y′), then x′
i ∈ Pi(x, y).

Assumption 10. For every i ∈ I for every (x, y), (x′, y′) ∈ ∏
i∈IXi × ∏

j∈J Yj such that
xi /∈ Pi(x

′, y′), there exists ε̄ > 0 such that for every ε ∈]0, ε̄] and every

(ξ, υ) ∈
∏
i∈I

(Xi ∩ (xi + εB)) ×
∏
j∈J

(Yj ∩ (yj + εB)),
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there exists λ ∈]0, 1] such that either ξ̄i = ξi +λ(x′
i −xi) ∈ Pi(ξ, υ), or Pi(ξ̄ , υ) = ∅ with

ξ̄i′ = ξi′ for all i′ �= i.

Assumption 8 states that satiation points are always in the preferred set of points of
non-satiation. Assumption 9 is fulfilled if preferences are complete and satisfying local
non-satiation at the points of non-satiation. Assumption 10 requires Assumption 5 to hold
also for all the consumption sets. Moreover, some kind of local homogenity is needed in
the affine subspaces where the preferred set is not strictly convex. A preference relation not
satisfying X is generated by the following:

Let P : R2+ → R2+ with an open graph, irreflexive, transitive, satisfying Assumption 9
and such that for all t ∈ R+, P(t, 0) = {y ∈ R2+|y1 + y2

√
t > t}. Then, (1, 0) /∈ P(0, 1),

but for all ε > 0 and all λ ∈]0, 1], (1 + ε, 0) + λ(−1, 1) /∈ P(1 + ε, 0).

Theorem 2. For every economy E satisfying Assumptions 1–5 and 8–10 there exists a
hierarchic equilibrium such that all consumers i ∈ I minimize expenditure.

More precisely, for every (δi) ∈ RI++ there exist such a hierarchic equilibrium (x, y,

P, w), rj ∈ {1, . . . , k} and qj ∈ [0,+∞] for all j ∈ J ∪{0} such that for all j ∈ J rj ≥ 2
and for all i ∈ I

wi = P

ωi +

∑
j∈J

θijyj


 + er0q0δi +

∑
j∈J

θijerj qj .

Proof. We start by defining price-dependent preferences correspondences

P̃i :
∏
i∈I

Xi ×
∏
j∈J

Yj × B→ Xi,

P̃i(x, y, p) =
{
Pi(x, y), if xi /∈ Ki,

Ki ∩ {x′
i ∈ Xi |p · x′

i < p · xi}, if xi ∈ Ki.

�
Claim 1. For all i ∈ I P̃i is irreflexive, convex valued and lower semi-continuous.

Proof. For all (x, y, p) ∈ ∏
i∈IXi × ∏

j∈J Yj × B such that xi /∈ Ki , P̃i coincides locally
with Pi by Assumption 8(1). So it is irreflexive, convex valued and lower semi-continuous
there.

Let (x, y, p) ∈ ∏
i∈IXi × ∏

j∈J Yj × B such that xi ∈ Ki . Then, P̃i is irreflexive at
(x, y, p) since xi /∈ {x′

i ∈ Xi |p · x′
i < p · xi} and it is convex valued by Assumption 8(1).

Let U be an open subset of Xi such that U ∩ P̃i(x, y, p) �= ∅. We may assume without
loss of generality that for all x′′

i ∈ U , p · x′′
i < p · xi − 2ε for some fixed ε > 0. Let V be

open neighborhood of (x, y, p) such that for all (x′, y′, p′) ∈ V , p′ · x′
i > p′ · xi − ε and

for all x′′
i ∈ U , p′ · x′′

i < p′ · xi − ε.
For (x′, y′, p′) ∈ V such that x′

i ∈ Ki we have for all x′′
i ∈ U ,p′ ·x′′

i < p′ ·xi−ε < p′ ·x′
i .

Thus, U ∩ P̃i(x
′, y′, p′) �= ∅.
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For (x′, y′, p′) ∈ V such that x′
i /∈ Ki we have Pi(x′, y′, p′) �= ∅ thus by Assumption

8(2), Ki ⊂ Pi(x
′, y′, p′) and thus U ∩ P̃i(x

′, y′, p′) �= ∅.
Thus, P̃i is lower semi-continuous. �

Note that the economy with the preference correspondences Pi replaced by P̃i satisfies
all assumptions of Theorem 1 apart the open graph property of the preferences. Apart in
Step 4 of the theorem’s proof, only lower semi-continuity of the preferences is used. Fur-
thermore, by Assumption 9, Pi coincides with its augmentation P̂i . So for every n ∈ N we
have the existence of a perturbed equilibrium (xn, yn, pn) as in Step 2, but now relative
to the preferences P̃i . Since for all (x′, y′, p) ∈ ∏

i∈IXi × ∏
j∈J Yj × B, Pi(x′, y′) ⊂

P̃i(x
′, y′, p), (xn, yn, pn) “converges”, as in the proof of Theorem 1, to a hierarchic equi-

librium (x, y,P, w) with respect to the preferences Pi .

Claim 2. For all n ∈ N all consumers minimize expenditure at (xn, yn, pn).

Proof. If for some n ∈ N and i ∈ I , xni /∈ Ki and for some (x′, y′) ∈ ∏
i∈IXi × ∏

j∈J Yj ,

xni /∈ Pi(x
′, y′) then by Assumption 9, x′

i ∈ Pi(xn, yn). Then,

pn · x′
i ≥ pn ·


ωi +

∑
j∈J

θijS̃j (p
n)


 + δi(1 − ‖pn‖) ≥ pn · xni .

If xni ∈ Ki and for some (x′, y′) ∈ ∏
i∈IXi ×

∏
j∈J Yj , xni /∈ Pi(x

′, y′) then by Assumption
8(2), Pi(x′, y′) = ∅, i.e. x′

i ∈ Ki and therefore pn · x′
i ≥ pn · xni . �

Claim 3. All consumers minimize expenditure at (x, y,P).

Proof. Let i ∈ I and (x′, y′) ∈ ∏
i∈IXi × ∏

j∈J Yj such that xi /∈ Pi(x
′, y′) and Px′

i <

Pxi . Thus, for all n, pn · (x′
i − xi) < 0. By Assumption 10, for all large enough n, there

exists λn ∈]0, 1] such that either ξni = xni + λn(x′
i − xi) ∈ Pi(xn, yn) or Pi(ξn, yn) = ∅

with ξn
i′ = xn

i′ for all i′ �= i. Since pn · ξni < pn · xni this would contradict expenditure
minimization at n. �

Example 6. The theorem fails without Assumption 9 (cf. Mas-Colell, 1992). Consider an
exchange economy with two consumers and one commodity, so the concept of hierarchic
equilibrium and dividend equilibrium coincide. Let X1 = X2 = R+, ω1 = ω2 = 2,
u1(x) = x,

u2(x) =
{

0, if x ≤ 3,
x − 3, if x ≥ 3.

All assumptions except Assumption 9 are satisfied.
Then, x1 = 2 + α, x2 = 2 − α, p = 1, w1 = w2 = 2 + α for α ∈ [0, 1] constitutes

the whole set of hierarchic equilibria with δ1 = δ2 > 0. For δ1 = 2, δ2 ∈ [0, 1], x1 =
4, x2 = 0, p = 1, w1 = 4, w2 = 2 + δ2 is a hierarchic equilibrium satisfying expenditure
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minimization. It corresponds to the unique Pareto optimum. So if the slack variables (δi)
are not carefully chosen, a Pareto optimal hierarchic equilibrium may fail to exist.

9. Core equivalence

Using Aubin’s (1979) fuzzy approach, Konovalov (1998) extends Debreu and Scarf’s
(1963) classical core equivalence result to the case of dividend equilibria within exchange
economies. For this he introduced a refinement of the core — the rejective core. We will
extend this equivalence result to the hierarchic equilibrium. Core equivalence for dividend
equilibria and for Walras equilibria are obtained as corollaries.

Usually, the core is defined as the set of allocations which cannot be improved upon by
any coalition I ⊂ I . There are two standard meanings to this:

1. The coalition I can achieve, on its own, an allocation they all prefer weakly and some
prefer it strictly.

2. The coalition I can achieve, on its own, an allocation they all prefer strictly.

Without a strong survival assumption and/or without a non-satiation assumption, the
core according to (1) (i.e. the strong core, that is the core concept using the weak notion
of blocking) is too small (it may be empty). However, the core according to (2) (i.e. the
weak core, that is the core concept using the strong notion of blocking) may be too big. To
illustrate this consider again Example 3 of Section 3.

Example 7. Let Xi = R3+, u1(x) = x1 − x2 − x3, u2(x) = x1 + 2x2 + x3, u3(x) =
x1 + x2 + 2x3, ω1 = (1, 1, 1), ω2 = ω3 = (0, 0, 0). The core according to (1) is empty
and the core according to (2) contains the allocation x1 = (1, 0, 0), x2 = (0, 0, 1), x3 =
(0, 1, 0). However, once this allocation is realized, agents two and three could continue
to trade amongst themselves leading for example to the allocation ξ1 = (1, 0, 0), ξ2 =
(0, 1, 0), ξ3 = (0, 0, 1), they both prefer. Since allocation x is not weakly Pareto optimal,
by Proposition 3 it cannot be decentralized by a hierarchic price.

Following Konovalov (1998), we will define the fuzzy rejective core for our
framework.

Definition 7.

1. The fuzzy coalition (λi)i∈I ∈ [0, 1]I \{0} f-rejects (x, y) ∈ F(E), if there existµ ∈ RI+,
η ∈ RI+ and an allocation x′ ∈ ∏

i∈IXi such that:
1.1. for all i ∈ I , µi + ηi = λi ;

1.2.
∑

i∈I λix′
i ∈ ∑

i∈Iµi

(
xi + ∑

j∈J θij(Yj − yj )
)

+ ∑
i∈I ηi

(
ωi + ∑

j∈J θijYj

)
;

1.3. for all i ∈ I with λi > 0, x′
i ∈ Pi(x, y).

2. The fuzzy rejective core FRCE of (E) is the set of (x, y) ∈ F(E) which cannot be
f-rejected by a fuzzy coalition.

In order to give an interpretation to this core concept, think of an economy with private
production Yi = ∑

j∈J θijYj and a continuum of consumers for each type i. According
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to this notion of rejection, the group λ (λi being the measure of members of type i) may
justify an objection against (x, y) ∈ F(E) by the argument: “even if [0, 1]I \ [0, λ1] ×
· · · × [0, λI ] were able to realize with some of us, i.e. with µ, the allocation x ∈ ∏

i∈IXi ,
then once the corresponding exchanges and productions are realized, we (group λ) will
change the allocation on the components we control towards some x′ ∈ ∏

i∈IXi we all
prefer.”

Of course the fuzzy rejective core is included in the in the weaker of the two standard
core concepts, i.e. the core according to (2).

In order to establish equivalence between the core allocations and the hierarchic equilib-
rium allocations, one needs a weaker form of profit maximization.

Example 8. Consider a two consumers one good economy with X1 = X2 = R+, initial
endowments ω1 = ω2 = 1 and u1(x) = −x, u2(x) = x. Suppose there is one firm entirely
owned by consumer 1 with a production set Y = −R+. No Walras equilibrium exists and
there exists a unique hierarchic equilibrium x1 = 0, x2 = 2, y = 0,p = 1,w1 ≥ 1, w2 = 2.
However, x1 = 0, x2 = 1 + t , y = t − 1 for t ∈ [0, 1] is in the fuzzy rejective core and
together with p = 1, w1 ≥ 1, w2 = 1 + t it could be called a weak hierarchic equilibrium.
Clearly, there is no reason why consumer 1’s firm should maximize profit; there is no
incentive to do so. This example also shows that the fuzzy rejective core is not included in
the set of weak Pareto optima.

Let (x, y,P, w) ∈ ∏
i∈IXi × ∏

j∈J Yj ×HP × (R̄k)I , be given. For every i ∈ I , let

κi = min {r ∈ {0, 1, . . . , k}|Pi(x, y) ∩ Bi(P, (w
1
i , . . . , w

r
i ,+∞, . . . )) = ∅}.

For every j ∈ J , let

κj = max{κi |i ∈ I, θij > 0}.
For κ ∈ {0, 1, . . . , k}, let P(κ) = 0, if κ = 0, and P(κ) = {p1, . . . , pκ} otherwise.

Definition 8. A collection (x, y,P, w) ∈ F(E) × HP × (R̄k)I is a weak hierarchic
equilibrium of the economy E if:

1. for all i ∈ I , xi ∈ Bi(P, wi) and Pi(x, y) ∩ Bi(P, wi) = ∅;
2. for all i ∈ I , Pωi + ∑

j∈J θijPyj ≤ wi ;
3. for all j ∈ J , yj ∈ Sj (P(κj )).

Every hierarchic equilibrium is a weak hierarchic equilibrium. When minimum-wealth
situations can be excluded, i.e. for example, if the strong survival assumption holds, then
this reduces to a sort of dividend equilibrium where the profit maximizing firms are those
who’s shareholders are not all satiated in their preferences. If furthermore non-satiation
holds, then this reduces to a Walras equilibrium.

Proposition 6. Every weak hierarchic equilibrium is in the fuzzy rejective core.

Proof. Let (x, y,P, w) be a weak hierarchic equilibrium and suppose without loss of
generality that for all i ∈ I , Pxi ≤ wi . Let λ ∈ [0, 1]I \ {0}, µ ∈ RI+, η ∈ RI+ and an
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allocation x′ ∈ ∏
i∈IXi such that:

1. for all i ∈ I , µi + ηi = λi ;
2. for all i ∈ I with λi > 0, x′

i ∈ Pi(x, y).

Let I = {i ∈ I |λi > 0}, κ = max{κi |i ∈ I}. Then, for every i ∈ I,

P(κi)xi ≤ wi < P(κi)x
′
i .

For all j ∈ J such that for some i ∈ I, θij > 0, y′
j ∈ Yj implies P(κj )(y′

j −yj ) ≤ 0. Then,
for every i ∈ I,

P(κi)x
′
i > max


sup


P(κi)


xi +

∑
j∈J

θij(Yj − yj )





 ,

sup


P(κi)


ωi +

∑
j∈J

θijYj








 .

Hence, for every i ∈ I,

P(κ)x′
i > max


sup


P(κ)


xi +

∑
j∈J

θij(Yj − yj )





 ,

sup


P(κ)


ωi +

∑
j∈J

θijYj








 .

Therefore,

P(κ)
∑
i∈I

λix
′
i > sup


P(κ)


∑

i∈I
µi


xi +

∑
j∈J

θij(Yj − yj )




+
∑
i∈I

ηi


ωi +

∑
j∈J

θijYj








 ,

and finally,

∑
i∈I

λix
′
i /∈

∑
i∈I

µi


xi +

∑
j∈J

θij(Yj − yj )


 +

∑
i∈I

ηi


ωi +

∑
j∈J

θijYj


 .

Thus, (x, y) ∈ FRC(E). �
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Proposition 7. Suppose for every j ∈ J , Yj is convex. Suppose for every i ∈ I , Xi is
convex, for every (x̄, ȳ) ∈ FRC(E), Pi(x̄, ȳ) is convex and open in Xi . Moreover, if J �= ∅,
suppose that Pi(x̄, ȳ) �= ∅ for i ∈ I and (x̄, ȳ) ∈ FRC(E) implies x̄i ∈ Pi(x̄, ȳ). 6

Then, for every (x̄, ȳ) ∈ FRC(E) there exists (P, w) ∈ HP×(R̄k)I such that (x̄, ȳ,P, w)
is a weak hierarchic equilibrium.

Proof. Let (x̄, ȳ) ∈ FRC(E). For every i ∈ I , let

Gi = Pi(x̄, ȳ) − {x̄i} −
∑
j∈J

θij(Yj − ȳj ); Hi = Pi(x̄, ȳ) − {ωi} −
∑
j∈J

θijYj ;

K = co ∪i∈I (Gi ∪ Hi).

If K = ∅, then 0 is a hierarchic equilibrium price. Otherwise, we need to proceed as
follows. �

Claim 4. 0 /∈ K.

Proof. We proceed by contraposition. Suppose 0 ∈ K. Then, there exists N̄ ∈ N and
vectors (xin), (ζin) and real numbers (λin) with n ∈ N̄ = {1, . . . , N̄} such that for every
n ∈ N̄ , in ∈ I , λin > 0, xin ∈ Pin(x̄, ȳ),

ζin ∈

x̄in +

∑
j∈J

θinj (Yj − ȳj )


 ∪


ωin +

∑
j∈J

θinj Yj


 ,

∑
n∈N̄ λin = 1 and

∑
n∈N̄ λin(xin − ζin) = 0.

For every i ∈ I set

λi =
∑

{n∈N̄ |in=i}
λin, ηi =

∑
{
n∈N̄ |in=i,ζin∈

(
ωi+

∑
j∈J θijYj

)}λin, µi = λi − ηi.

For all i ∈ I such that λi > 0, set

xi = 1

λi

∑
{n∈N̄ |in=i}

λinxin .

For all i ∈ I such that ηi > 0 set

yi = 1

ηi

∑
{
n∈N̄ |in=i,ζin∈

(
ωi+

∑
j∈J θijYj

)}λinζin .

6 Without this assumption we could have the same problems as evoked in Example 8. An even weaker form of
profit maximization would be needed. One has an incentive to change the production plan to a more profitable one
if it allows also to buy a preferred point. If the preferred point is far away, it may be pointless to maximize profit.
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For all i ∈ I such that µi > 0 set

zi = 1

µi

∑
{
n∈N̄ |in=i,ζin /∈

(
ωi+

∑
j∈J θijYj

)}λinζin .

For i ∈ I such that λi = 0 choose an arbitrary xi ∈ Xi , for all i ∈ I such that ηi = 0

choose an arbitrary yi ∈
(
ωi + ∑

j∈J θij Yj
)

and for all i ∈ I such that µi = 0 choose an

arbitrary zi ∈
(
x̄i + ∑

j∈J θij (Yj − ȳj )
)

.

Thus,∑
i∈I

λixi =
∑
i∈I

µizi +
∑
i∈I

ηiyi .

By the convexity of the production sets,

∑
i∈I

µizi +
∑
i∈I

ηiyi ∈
∑
i∈I

µi


x̄i +

∑
j∈J

θij(Yj − ȳj )


 +

∑
i∈I

ηi


ωi +

∑
j∈J

θijYj


 .

For every i ∈ I with λi > 0, xi ∈ Pi(x̄, ȳ) by the convexity of Pi(x̄, ȳ). This contradicts
that (x̄, ȳ) is in the fuzzy rejective core. This ends the proof of the claim. �

Now, by iteratively applying the separating hyperplane theorem, we can choose a se-
quence of two by two orthogonal vectors {p1, . . . , pL} ⊂ RL \ {0} such that for every
r ∈ {1, . . . , L} and every z ∈ Kr−1, pr · z ≥ 0 where K0 = K and for r ≥ 1, Kr =
K ∩ {p1, . . . , pr}⊥.

For i ∈ I , let Ki = Gi ∪ Hi , K0
i = Ki , for r ∈ {1, . . . , L}, Kr

i = Ki ∩ {p1, . . . , pr}⊥.
Note that (x̄, ȳ) ∈ FRC implies that for all i ∈ I , 0 /∈ Ki and thereforeKL

i = ∅. For every
j ∈ J , let rj = min r ∈ {0, . . . , L} such that for all i ∈ I with θij > 0, Kr

i = ∅.
Let k = min r ∈ {1, . . . , L} such that for all i ∈ I , Kr

i = ∅. Set P = {p1, . . . , pk}.

Claim 5. For every j ∈ J , ȳj ∈ Sj (P(rj )).

Proof. Suppose there exists j ′ ∈ J such that ȳj ′ /∈ Sj ′(P(rj ′)) and let r̄ be the smallest r
such that ȳj ′ /∈ Sj ′(P(r̄)). Choose i ∈ I such that θij′ > 0 and such thatKr̄

i �= ∅. Thus, there
exists xi ∈ Pi(x̄, ȳ) and y ∈ ∏

j∈J Yj with P(r̄)yj ′ > P(r̄)ȳj ′ and for j �= j ′, yj = ȳj
such that

P(r̄ − 1)xi − maxP(r̄ − 1)





ωi +

∑
j∈J

θijyj


 , (x̄i + (yj ′ − ȳj ′)


 = 0.

Thus, for λ ∈]0, 1] small enough

P(r̄)(λxi + (1 − λ)x̄i − maxP(r̄)





ωi +

∑
j∈J

θijyj


 , (x̄i + yj ′ − ȳj ′)


 < 0.
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This contradicts the iterative separation argument. �

For every i ∈ I , let wi = max{P x̄i ,Pωi + ∑
j∈J θijP ȳj }. Thus, x̄i ∈ Bi(P, wi).

Claim 6. For every i ∈ I , Bi(P, wi) ∩ Pi(x̄, ȳ) = ∅.

Proof. The convexity of Xi implies by Lemma 2, Bi(P, w) = {xi ∈ Xi |Pxi ≤ w}. If
there exists i ∈ I and ξi ∈ Bi(P, wi) ∩ Pi(x̄, ȳ), then there exists a sequence {ξni } ⊂ Xi

converging to ξi such that for all n, Pξni ≤ wi . Since Pi(x̄, ȳ) is open in Xi , for all large
enough n, ξni ∈ Pi(x̄, ȳ), but this contradicts the iterative separation argument. �

Given (x̄, ȳ,P, w), one easily checks that for every j ∈ J , rj = κj . Thus, (x̄, ȳ,P, w)
is a weak hierarchic equilibrium.

Corollary 2. Suppose for every i ∈ I , Xi is convex, Pi has convex, open values in Xi and
J = ∅. Then, the set of hierarchic equilibrium allocations and the set of fuzzy rejective core
allocations coincide.

This is immediate by the two previous propositions and the fact that in an exchange
economy the weak hierarchic equilibrium and the hierarchic equilibrium coincides. In view
of the remark after Definition 8, when minimum-wealth situations can be excluded, then
the above propositions hold for a sort of dividend equilibrium where the profit maximizing
firms are those whose shareholders are not all satiated in their preferences. If furthermore
non-satiation holds, then the equivalence between Walras equilibria and the fuzzy rejective
core is a corollary of Propositions 6 and 7.

Note that the non-emptiness of the fuzzy rejective core without an interiority condition
follows from Theorem 1 together with Proposition 6.

10. Monotonicity

In the following proposition, we will prove that there exist hierarchic equilibria satisfying
a monotonicity property. Monotonicity means that if agent alpha can propose all net trades
beta can propose, then alpha will obtain dividends at least as high as beta (cf. Aumann
and Drèze, 1986). This implies in particular that there always exists an equal treatment
hierarchic equilibrium.

Proposition 8. For every economy E satisfying Assumptions 1–5 there exists a hierarchic
equilibrium (x, y,P, w), such that for all i, i′ ∈ I ,Xi+t ⊂ Xi′ and {ωi}+

∑
j∈J θijYj+t ⊂

{ωi′ } + ∑
j∈J θi′j Yj for some t ∈ RL implies Bi(P, wi) + t ⊂ Bi′(P, wi′).

Proof. The proof consists in adding some arguments to the proof of Theorem 1. Suppose
δ1 = · · · = δI = 1 and consider the sequence Bi(p

n) converging to Bi . Suppose xi ∈ Bi ,
then there exists a sequence xni converging to xi , such that for every n, xni ∈ Bi(p

n). Thus,

for everyn,pn ·(xni +t) ≤ pn ·
(
ωi + ∑

j∈J θijS̃j (p
n)

)
+pn ·t+1−‖pn‖.One easily checks
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that the right-hand side is smaller than or equal topn ·
(
ωi′ + ∑

j∈J θi′j S̃j (pn)
)
+1−‖pn‖.

So for every n, xni + t ∈ Bi′(p
n) and the sequence converges to xi + t , which is therefore

in Bi′ . �

11. Related generalized equilibrium concepts

The idea of hierarchic prices has been introduced in Gay (1978). He proposed general-
ized prices with two by two disjoint support, calling them “exchange rates”. We gave the
definition in Section 3. Based on such a price notion Danilov and Sotskov (1984, 1990)
proposed equilibrium concepts for exchange and for production economies with consump-
tion sets corresponding to the positive orthant. Mertens (1996) also proposes a special case
of Danilov and Sotskov’s (1990) equilibrium concept for linear exchange economies (cf.
Florig, 1998). His concept is however designed to meet the requirements of some market
mechanism rather then to generalize the Walras equilibrium in a broad setting.

Marakulin (1990) proposed a generalized equilibrium concept for exchange economies
within terms of non-standard analysis. Existence is shown with convex consumption sets.
He shows that his equilibrium concept can be reformulated in terms of standard analysis
provided the consumption sets are polyhedral. In this case his equilibrium concept coincides
with the hierarchic equilibrium.

The remaining part of this section is devoted to a comparison between Danilov and
Sotskov’s (1990) generalized equilibrium concepts and the hierarchic equilibrium.

Definition 9. An exchange value P = {p1, . . . , pk} is an ordered family of vectors of RL+
such that for all r, r ′ ∈ {1, . . . , k}, supppr �= ∅, r �= r ′ implies supppr ′ ∩ supppr = ∅
and ∪k

ρ=0 supppρ = L.

An exchange value is a special case of exchange rate. We note EV the set of exchange
values. Of course EV ⊂ HP .

Definition 10. A PV-equilibrium of an economy E is a collection (x, y,P, w) ∈ ∏
i∈IXi×∏

j∈J Yj × EV × (R̄k)I such that:

1. for all i ∈ I , xi ∈ Bi(P, wi) and Pi(x, y) ∩ Bi(P, wi) = ∅;
2. for all i ∈ I , Pωi + ∑

j∈J θijπj (P) ≤ wi ;
3. Ei∈I xi ≤ Ej∈J yj + ω.

A major drawback of this concept is of course that no decision criterion is imposed
on the firms. So it is not clear how the production plans are determined. We will see
that another drawback is possible non-existence under standard assumptions. Danilov and
Sotskov (1990) proposed the PV-equilibrium for the case |I | = |J |, for every i ∈ I ,
Xi = RL+ and θii = 1. For a certain very restrictive class of economies, one may prove
existence of a PV-equilibrium (Florig, 1997), even with profit maximization such as in
Section 2. However, a PV-equilibrium may fail to exist even under Danilov and Sotskov’s
(1990) assumptions.
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Example 9. Consider an economy with three commodities, two consumers and a firm
entirely belonging to consumer two. LetX1 = X2 = R3+,u1(x) = x1,u2(x) = x1+x2+x3,
ω1 = (1, 1, 1), ω2 = (0, 0, 0), Y2 = {y ∈ R3|y ≤ t (1, 1,−1), t ≥ 0} and θ22 = 1. It is
easy to check that no Walras equilibrium exists. We must have suppp1 = {1, 3}. Clearly,
commodity one should be in suppp1, since otherwise consumer one will be able to buy it
for free as he has strictly positive income with respect to any p1. When commodity one is
in suppp1, commodity three must also be in suppp1, since otherwise the firm can make an
infinite profit with respect to p1. Then by Definition 10(2), consumer two would have an
infinite income on sub-market one and, given his preferences, Definition 10(1) could not
hold. With commodity two in suppp1, we would be in the standard case, thus, as no Walras
equilibrium exists, 2 is in suppp2. The unique exchange value, which may be candidate
for a PV-equilibrium price, is P = {(1, 0, 1), (0, 1, 0)}. However, π1(P) = (0,+∞),
B2(P, (0,+∞)) = {0} × R+ and hence for all w2 ∈ R̄2 with Pω2 + π2(P) ≤ w2,
argmaxx∈B2(P,w2)

u2(x) = ∅. Hence, no PV-equilibrium exists for this economy which fits
into Danilov and Sotskov’s set up. A hierarchic equilibrium of this economy, is for example
(x, y, {p1, p2}, w) with x1 = (2, 1, 0), x2 = (0, 1, 0), y1 = (1, 1,−1), p1 = (1, 0, 1),
p2 = (−1, 2, 1), w1 = (2,+∞), w2 = (0, 2).

The generalized equilibrium concept Danilov and Sotskov (1990) proposed for exchange
economies is called EV-equilibrium. The difference with the PV-equilibrium is that here
one requires that for all i ∈ I , Pωi = wi .

Definition 11. An EV-equilibrium of an exchange economy E is a collection (x,P) ∈∏
i∈IXi × EV such that:

1. for all i ∈ I , xi ∈ Bi(P,Pωi) and Pi(x) ∩ Bi(P,Pωi) = ∅;
2. Ei∈I xi ≤ ω.

Danilov and Sotskov (1990) proved existence of an EV-equilibrium in the case where for
every i ∈ I , Xi = RL+. In the same framework, without free disposal, an EV-equilibrium
is a hierarchic equilibrium (cf. Section 3). A Walras equilibrium is not necessarily an
EV-equilibrium as defined (cf. Example 1; Florig, 1998). In Example 4 the consumption
sets are different from the positive orthant and no EV-equilibrium exists. Another drawback
of the EV-equilibrium is that its equilibrium allocation set is unstable, with respect to
modifications of the economy which seem to be irrelevant to us. To see this, consider again
Example 2.

Example 10. Let X1 = X2 = R2+, ω1 = (1, 1), ω2 = (0, 1) and u1(x) = x1, u2(x) = x2.
Here, the EV-equilibria correspond to the worst hierarchic equilibria in terms of Pareto
optimality: (x, {p1, p2}) with x1 = (1, t), x2 = ω2 for t ∈ [0, 1] and p1 = (1, 0), p2 =
(0, 1). However, (ξ, {p1, p2}, w) with ξ1 = (1, 0), ξ2 = (0, 2) and w1 = (1,+∞), w2 =
(0, 2) is also a hierarchic equilibrium.

Introduce a third commodity into the economy, which for both consumers is completely
useless, but both own one unit of this commodity. This could be interpreted as paper money
as in Kajii (1996). The “new” economy is now basically the same: X′

1 = X′
2 = R3+,
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ω′
1 = (1, 1, 1), ω′

2 = (0, 1, 1), u′
1(x) = x1, u′

2(x) = x2. We now have, amongst others,
an EV-equilibrium with q1 = (1, 0, 0), q2 = (0, 1, 1), w1 = (1,+∞), w2 = (0, 2) and
x′

1 = (1, 0, 2), x′
2 = (0, 2, 0).

Note that the Walras equilibrium suffers from the same defect. Consider again
Example 6.

Example 11. Let X1 = X2 = R+, ω1 = ω2 = 2, u1(x) = x,

u2(x) =
{

0, if x ≤ 3,
x − 3, if x ≥ 3.

This example satisfies all assumptions needed to ensure existence as in Debreu (1962).
There is a unique Walras equilibrium x1 = 2, x2 = 2, p = 1. Now introduce a second
commodity playing the role of paper money. Let ω1 = (2, 2), ω2 = (2, t) for t ∈ [0, 1].
Then, x′

1 = (4, 0), x′
2 = (0, 2 + t), p′ = (1, 1) is a new Walras equilibrium which Pareto

dominates the first.

It is easy to see that the dividend equilibrium does not share this defect since the value
of supplementary commodities which do not enter the preferences are simply transferred
into the slack variable (cf. Kajii, 1996). The same holds for hierarchic equilibria. Some
additional revenue of new and useless commodities just enter the dividend structure. So the
set of hierarchic equilibria is not changed by such modifications.
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